
Edward Yourdon

WHEN GOOD ENOUGH
SOMARE IS BEST

How to get people There’s a sign that my printer displays promi-
nently on his wall: “You can get it fast; you can have

and technology to zt cheap; you can get it right. Pick two!” That same

work together.
sign could be displayed on the wall of evq so&are-
developm ent organization. And yet most of our cus-
tomers want all three. Ed Yourdon tackles that
dilemma in this issue’s column. He contends that we
don’t rationally establish proper balance among the
critical project parameters: cost, schedule, stafing,
fh-tionality, and quality. Our customers want 11s to
optimize all these parameters, even when this is
clearly impossible. The purists among you may find
Ed’s comments grating. But I suspect that those of
you who’ve been bloodied in tbe pro-ject wars will find
wisdom in his words.

- Rage-r Pressman

IN THE BEST OF ALL POSSIBLE WORLDS,
our users would like us to develop software
instantly, at no cost, and with no defects. But
that’s not possible in today’s world.
In more and more application
domains, we’ve been forced to accept
that the reengineering slogan of
“faster, cheaper, better” really means
“fast enough, cheap enough, good
enough.”

IT MAY SHOCK
PURISTS,
BUT THIS MAY
BE A MORE
RATIONAL
WAY TO
NEGOTIATE
SUCCESS. .

In the past few months, the con-
cept of “good-enough” software has
been getting a lot of attention: the
uproar over the Pentium bug suggests
that it was deemed not good enough,
while the surprisingly numerous
defects that are publicly acknowl-
edged in popular shrinkwrapped

of negotiating with our customers and managers
on what constitutes success.

MISAPPLIED IDEAL. In the past, we often
negotiated critical success factors once, at the
beginning of the project, then tried to optimize
a few other parameters the customer was often
unaware of. For example, functionality, sched-
ule, budget, and staff resources typically were
negotiated in terms of political constraints: We
were told to deliver a software system with a
certain amount of (often ambiguous, misunder-
stood, and poorly documented) functionality
within a (hysterically optimistic) schedule and
(imposed by fiat) budget, and with a (relatively
fixed) staff of developers. Within those con-
straints, the developers often tried to optimize
such features as maintainability, portability,
reliability, and efficiency. Thus, the battle cry
for many projects was “We’ll deliver high-qual-

ity, bug-free software on time,
within budget!”

software products - word processors, spread-
sheets, tax calculators, and PC operating systems
- suggest that those products are good enough.

The concept of good-enough software is
beginning to challenge some of our basic
assumptions about software development, and I
believe it will fundamentally change the way we

Editor: manage software development. Some purists -

Roger Pressman especially veterans who tend to read magazines

R. Pressman & Associates
like this one, and who regard themselves as pro-
fessionals - may express horror at this “flight

62OE*Slo~eDr- from quality.” But I think a good-enough
Orange, Cl 06477 approach will lead to more rational software-
rspO547@aol.com d evelopment projects and a more rational way

For an important class of software
projects, that battle cry is still relevant
- obviously, nobody wants to fly on
an airplane whose guidance-control
software has as many bugs as the word
processor they can buy at their local
computer store. And nobody wants
their telephone or automated teller to
malfunction as often as their PC.

But for another class of software
projects - a class that is now
arguably far larger than the mission-
critical class - rapid delivery to the

customer is sometimes more important than
number of defects. In other situations, “feature
richness” may be the most important factor; in
still others, cost may be the only thing the user
cares about.

WHEN BEST ISN’T. The shift in expectations
we’re experiencing stems from information tech-
nology’s transition into a consumer commodity:
unit costs are low and everyone can afford it. In
the past, most of us worked on proprietary, one-
of-a-kind systems, developed according to
schedules measured in years and funded by bud-
gets measured in millions. Some of us are still

IEEE SOFTWARE 79

employed by organizations that want
custom systems - but schedules and
budgets have shrunk considerably. And
our customers will often point out that
they can achieve almost the same results
by jury-rigging a combination of
Microsoft Word, Lotus Notes, and
Borland Quattro, which they can obtain
from a discount mail-order catalog.
Shrinkwrapped software may be clumsy
and limited in its functionality, our cus-
tomers tell us, but it’s cheap and they can
put it into service tomorrow morning.

LATE IS NEVER BETTER.That customers
now view software as a commodity has
also introduced an inertia we must cope
with, especially in the consumer desktop - .
market. It goes like this.
Suppose the time has
come to acquire a word
processor. You have a
choice of products A, B,
and C. Product A costs
$500 and comes with a
money-back guarantee;
product B costs $100 and
comes with a long dis-
claimer that basically says
“caveat emptor.” Product

IT IS THE
CUSTOMER WHO
DECIDES THE
PROPER
BALANCE OF
PARAMETERS.

10 times higher than your existing prod-
uct. Would you switch? Maybe - but
maybe not. What if product C required
you to convert all your existing word-
processing documents to a different for-
mat? What if it required you to switch to
a different operating system? You might
well conclude that product B was good
enough.

In this case, the project manager for
product B has outsmarted the project
manager for product C, even though C’s
manager pursued a set of goals that all
software professionals would admire.

DO THE MATH. Software project man-
agers today must be aware that each para-
meter - cost, schedule, staffing, func-

tionality, and quality - is
potentially critical. It is the
customer - be they an end
user for an in-house system
or the marketing department
for a software company -
who decides what the proper
balance is. It’s also crucial to
remember that the balance
among parameters is dynam-
ic and may need to be read-
justed daily. After all, the

C costs only $50, has twice as many fea-
tures as either A or B, and its developers
are so confident of its quality they’re
bragging about a double-your-money-
back guarantee. The only problem with
product C is that it’s vaporware and
(despite glowing reviews in all the trade
magazines) won’t be available for six
months. Assuming you need a word
processor AOW, you will probably make a
rational choice between A and B based
on your assessment of the importance of
cost versus defects.

But now suppose you already have a
word processor, perhaps B, and you’ve
been using it for a year. Some of its fea-
tures are slightly annoying, but it’s ade-
quate for your mundane word-processing
tasks. B’s quality isn’t all that great: it
crashes once a day, and you’ve become
accustomed to saving your documents
every 15 minutes.

Now vendor C finally delivers its
product and it really does cost only $50
and it really does have a level of quality

business environment is likely to change
in a dramatic, unpredictable way - and
this can easily change the customer’s per-
ception of the importance of schedule,
cost, and so on.

Intelligent customers, especially those
who have survived today’s tumultuous
business environment, know trade-offs
must be made and priorities balanced.
But customers are often naive about the
details. For example, it may not occur to
them that defects (aka “bugs”) are a para-
meter we must consciously plan for, and
for which we must trade off other para-
meters. And of course customers may not
want to make the cold-blooded, rational,
calculated decisions about those trade-
offs. Although immensely frustrating to
developers, it’s understandable that cus-
tomers demand a software system in half
the time, at half the cost, with twice the
functionality and half as many defects as
the developers believe technologically
possible. They don’t know any better.

What does this mean for the project

manager? If we can assume for the
moment that we’re dealing with rational
customers, and that a rational negotia-
tion can determine the criteria for pro-
ject success, then it is incumbent upon
the manager to be as forthright and
detailed as possible about all the relevant
success criteria. Thus, instead of just
assuming that the customer requires zero-
defect quality, the project manager
should say something like, “Our standard
approach for developing the software
you’ve described will require X number
of people and Y units of time with a cost
of Z dollars; we’ll deliver P units of func-
tionality with a defect level of Q bugs per
function point.”

Chances are that the proposed combi-
nation of X, Y, Z, P, and Q will not be
acceptable to the customer, whose likely
response might be “You can’t have Y
units of time, we need the software in
half that time.” Or a less rational cus-
tomer might respond, “We want twice
the functionality you proposed, but you
can only have half as many people, half
the time, and half the budget.” The
response then is that this is possible,
assuming that the customer completely
relaxes the constraint on the number of
defects (most likely an unrealistic
assumption). After all, I can deliver an
infinite amount of software, with an inli-
nite amount of functionality, in zero time
- if it doesn’t have to work. An even less
rational customer might constrain all the
parameters to some demonstrably
unachievable level! It is perfectly rational
for our customers to challenge our pro-
posal for X, Y, Z, P, and Q - particularly
if we can get them to focus their atten-
tion on one parameter at a time. If the
user wants the software in half the time,
then it’s incumbent on us to provide a
counterproposal that shows the effect
such a change will have upon one or
more of the other parameters.

Some 20 years ago Fred Brooks
reminded us (The Mythical Man-Month,
Addison-Wesley, 1975) that time and
staff resources are not interchangeable in
a linear relationship. If we reduce the
project schedule by half it will more than
double the required staff. Or we can cut
the schedule in half, keep the staff con-

80 MAY 1995

want, and increase the cost in a nonlinear
fashion (by having the constant-level staff
work extraordinary levels of overtime).

NEGOTIATING A SUCCESSFUL PROJECT.
The mathematics of the relationships
between X, U, 2, P, and Q are something
we don’t know enough
about at our present level of
software engineering. Lany
Putnam and Ware Myers
have explored this in their
book, A/leancres j% Excelknc~
- Reliable Sojkuare m Time,
Within Budget (Prentice-
Hall, 1992), but much more
work is necessary.

allow for dynamic renegotiations once
the project has commenced.
Renegotiation may not be all that impor-
tant on a project that only takes three
months. But if a project lasts more than a
year or two, renegotiation is almost
inevitable in today’s turbulent business

environment.
Although the precise

Similarly, some com-
mercial project-estimating
packages let managers

I
I CAN DELIVER nature of the mathematical

ALL KINDS OF
relationships has yet to be
developed in detail, we

SOFlWARE IN have enough information

NO TIME-IF IT today - especially from
the work of such metrics

DOESN’T HAVE experts as Larry Putnam,

TO WORK. Howard Rubin, and
Capers Jones - to provide
a reasonable basis for a
rational discussion of the

explore trade-offs among these parame- issues with our customers. The biggest
ters when they establish the initial pro- difficulty, I believe, is one of politics and
ject estimates and plans, but they rarely management. Getting our customers to

:ngage in a rational negotiation will
arobably require some extensive educa-
ion, but getting our project manages to
negotiate in this fashion will be equally
rlifficult.

It is indeed difficult to say to a cus-
tomer, “I’m going to deliver a system to
you in six months that will have 5,000 bugs
in it, and you’re going to be very happy!”
But that may well be the world many of us
live in for the next several years. l

Edward Ym&n k a qfhuare-engineer-
ing ktxznt and a&or wbo developed
the Yourah method of structured syrtents
anuryrir and designed and c&eloped tbe
Coad/Yourdon method of object-oriented
analysis and design. He edits three so&
ware journals: American Programmer,
Guerrilla Programmer, and
Application Development Strategies.
He can be reached at 71250.2322@
crmp.reroe.cum.

utsdorganizatlons.
s rnusl have an MS. or Ph.D. in Computer Science or a

muse. Preference will be given to those who have a background in

l leergegmined. architecturecentered muse
and structural impediments to systematic

ensation will be competitive and based on experience. Appliitions
inctude a curmnt resume and references.

I IEEE MANAOERS I I
IEEE TECHNICAL SPECIALISTS

I I I
1 HARDWARE SOFTWARE SYSTEMS R&D

I
SUPPORT QA MARKETING

The Technology Registry is a state-of-the-art online
recruitment database used by a national consortium of
technology companies, search firms and venture capital
funds to find talented managers and technical specialists
who can help create successful businesses out of the
exciting technologies emerging in the 1990s. IEEE
members are in particularly high demand because they
have always been in the forefront of new technologies. If
you are interested in joining the team of a rapidly growing
technology company or an entrepreneurial venture, now
or in the future, your profile should be in the Technology
Registry. You may contact us via our Internet address
(http://www.techreg.com/techreg/) or send your resume
in confidence to: Technology Registry, 555 Bryant Street,
#750, Palo Alto, California 95301.

If you are IEEE member em loyed b a techiology
compan

in&y, you should L In our database.
or looking for em o ment n a technology

